Hàm số nào sau đây không phải là nguyên hàm của hàm số \(y = {e^{ – x}}\)
2. \( - {e^{ - x}} + C.\)
Tính tích phân: \(I = \int\limits_{ – 2}^{ – 1} {\sqrt {1 – 4x} } dx\), ta có kết quả
2. \(I = \frac{{5\sqrt 3 }}{6} + \frac{9}{2}.\)
Cho hình phẳng (H) giới hạn bởi \(y = 2x – {x^2},{\rm{ }}y = 0\). Tính thể tích của khối tròn xoay thu được khi quay (H) xung quanh trục Ox ta được \(V = \pi \left( {\frac{a}{b} + 1} \right)\). Khi đó
1. \(a = - 7,\;b = 15.\)
Cho \(f\left( x \right)\) liên tục trên [0;10] thỏa mãn: \(\int\limits_0^{10} {f\left( x \right)} dx = 7\), \(\int\limits_2^6 {f\left( x \right)} dx = 3\). Khi đó, \(P = \int\limits_0^2 {f\left( x \right)dx} + \int\limits_6^{10} {f\left( x \right)dx} \) có giá trị là:
3. \(2.\)
Tính tích phân: \(I = \int\limits_0^1 {\frac{{{x^3}}}{{{x^4} + 1}}} dx\), ta có kết quả:
3. \(I = \frac{1}{4}\ln 2.\)
Thể tích V của khốii tròn xoay tạo thành khi ta cho hình phẳng D giới hạn bởi các đường \(y = f(x)\), trục Ox, x=a, x = b (a< b) quay quanh trục Ox được tính bởi công thức:
2. \(V = \int\limits_a^b {{f^2}(x)} dx.\)
Công thức diện tích hình phẳng giới hạn bởi \(y = f\left( x \right)\), \(y = g\left( x \right)\) liên tục trên\(\left[ {a;b} \right]\) và hai đường thẳng \(x = a;x = b\) là
1. \(S = \left| {\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} } \right|.\)
Tính tích phân \(I = \int\limits_0^1 {x{e^x}dx} \), ta có kết quả:
3. \(I = - 1.\)
Tính tích phân: \(I = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{dx}}{{{{\sin }^2}x}}} \).
1. \(I = 1.\)
Thể tích của khối tròn xoay tạo thành khi quay hình phẳng D giới hạn bởi các đường \(y = \sqrt {x – 1} \) , trục hoành, x=2 và x=5 quanh trục Ox bằng:
3. \(\int\limits_2^5 {\left( {x - 1} \right)dx} .\)
Cho \(F\left( x \right),G\left( x \right)\) lần lượt là một nguyên hàm của \(f\left( x \right),g\left( x \right)\) trên tập \(K \subset R\) và \(k,h \in R\). Kết luận nào sau đây là sai?
3. \(\int {\left[ {kf\left( x \right) \pm hg\left( x \right)} \right]} dx = kF\left( x \right) \pm hG\left( x \right) + C.\)
Công thức nào sau đây dùng để tính diện tích hình phẳng giới hạn bởi các đường y=2x, y=2, x=0, x=1 cho kết quả sai?
2. \(S = \int\limits_0^1 {\left( {2 - {2^x}} \right)} dx.\)
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục Ox, hai đường thẳng x=a, x=b (a
1. \(S = \pi \int\limits_a^b {{f^2}\left( x \right)} dx.\)
Tính tích phân: \(I = \int\limits_{\frac{1}{e}}^e {\frac{{dx}}{x}} \).
3. \(I = -2.\)
Tính tích phân \(I = \int\limits_0^\pi {x\sin xdx} \), ta có kết quả:
4. \(I = \pi .\)
Tính tích phân \(I = \int\limits_1^2 {\frac{1}{{2x – 1}}dx} .\)
4. \(I = \frac{1}{2}\ln 3.\)
Đặt \(I = \int\limits_0^{\frac{\pi }{2}} {x\sin xdx} \) và \(J = \int\limits_0^{\frac{\pi }{2}} {{x^2}co{\mathop{\rm s}\nolimits} xdx} \). Khẳng định nào sau đây đúng?
3. \(J = \frac{{{\pi ^2}}}{4} + 2I.\)
Cho hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục Ox, hai đường thẳng x = 0, x = 1 . Thể tích khối tròn xoay khi quay hình đó xung quanh trục hoành là:
1. \(\pi \int\limits_0^1 {{e^{2x}}dx} .\)
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} – 3{x^2} + 2x\), trục tung, trục hoành, đường thẳng \(x = \frac{3}{2}\), ta có kết quả:
3. \(\frac{9}{{64}}.\)
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là
1. \(F\left( x \right) = - \cos 2x + C.\)
Cho \(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{\rm{cos}}xdx}}{{{\mathop{\rm s}\nolimits} {\rm{inx + cosx}}}}} \) và \(J = \int\limits_0^{\frac{\pi }{2}} {\frac{{{\rm{sin}}xdx}}{{{\mathop{\rm s}\nolimits} {\rm{inx + cosx}}}}} \). Biết rằng I = J thì giá trị của I và J bằng:
1. \(\frac{\pi }{2}.\)
Tìm nguyên hàm của hàm số f(x) thỏa điều kiện:\(f(x) = 2x – 3\cos x,F(\frac{\pi }{2}) = 3\)
4. \(F(x) = {x^2} - 3\sin x + 6 + \frac{{{\pi ^2}}}{4}.\)
Hàm số \(F\left( x \right) = {e^x} – \cot x + C\) là nguyên hàm của hàm số \(f\left( x \right)\) nào?
1. \(f\left( x \right) = {e^{ - x}} + \frac{1}{{{{\sin }^2}x}}.\)
Họ nguyên hàm của hàm số: y = sin3x.cosx là
4. .\({\tan ^3}x + C.\)
Nếu gọi V là thể của khối tròn xoay có được khi cho hình phẳng giới hạn bởi các đường \(x = 0,x = \frac{\pi }{4},y = 0,y = s{\rm{inx}}\) quay xung quanh trục Ox thì:
4. \(V = \frac{\pi }{2}\left( {\frac{\pi }{4} - \frac{1}{2}} \right).\)
Kết quả:
Tải PDF tài liệu học tập đang trở thành lựa chọn phổ biến cho sinh viên và người đi làm nhờ tính tiện lợi và tiết kiệm thời gian. Tài liệu PDF cung cấp nhiều nội dung từ sách PDF, tài liệu nghiên cứu, đến giáo trình chuyên ngành, giúp người dùng dễ dàng lưu trữ và truy cập trên các thiết bị số. Việc sử dụng tài liệu PDF không chỉ giúp tăng cường kiến thức mà còn hỗ trợ học tập và làm việc hiệu quả hơn.