1. Trang Chủ
  2. ///

Kiểm Tra Thường Xuyên Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 5

Xem thêm đầy đủ hơn Kiểm Tra Thường Xuyên Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 5 tại: https://tusach.vn/tai-lieu-hoc-tap/trai-nghiem/kiem-tra-thuong-xuyen-bai-15-ham-so-online-co-dap-an-va-loi-giai-de-5

Đề Kiểm Tra: Kiểm Tra Thường Xuyên Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 5

Câu 1:

Tìm tập xác định \(D\) của hàm số \(y = \sqrt {6 + {x^2}} + \frac{4}{{5x – 10}}\).

Điều kiện: \(\left\{ \begin{gathered} 6 + {x^2} \geqslant 0\,\,\,(luôn\,đúng) \hfill \\ 5x – 10 \ne 0 \hfill \\ \end{gathered} \right.\)\( \Leftrightarrow 5x – 10 \ne 0 \Leftrightarrow x \ne 2\).

Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ 2 \right\}.\)
Câu 2:

Tập xác định của hàm số \(y = \sqrt {x – 3} + \frac{1}{{x – 3}}\)là:

Tập xác định của hàm số là những giá trị \(x\) thỏa mãn: \(\left\{ \begin{gathered} x – 3 \geqslant 0 \hfill \\ x – 3 \ne 0 \hfill \\ \end{gathered} \right. \Leftrightarrow x > 3\).
Câu 3:

Tập xác định \(D\) của hàm số \(y = \sqrt {x + 2} + 4\sqrt {3 – x} \) là

Để hàm số \(y = \sqrt {x + 2} + 4\sqrt {3 – x} \) xác định thì \(\left\{ \begin{gathered} x + 2 \geqslant 0 \hfill \\ 3 – x \geqslant 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x \geqslant – 2 \hfill \\ x \leqslant 3 \hfill \\ \end{gathered} \right. \Rightarrow x \in \left[ { – 2;3} \right].\)
Câu 4:

Tập xác định của hàm số \(y = \frac{{\sqrt {3 – x} + \sqrt {x + 1} }}{{{x^2} – 5x + 6}}\)là

Hàm số xác định \( \Leftrightarrow \left\{ \begin{gathered} 3 – x \geqslant 0 \hfill \\ x + 1 \geqslant 0 \hfill \\ {x^2} – 5x + 6 \ne 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x \leqslant 3 \hfill \\ x \geqslant – 1 \hfill \\ x \ne 3 \hfill \\ x \ne 2 \hfill \\ \end{gathered} \right. \Leftrightarrow x \in \left[ { – 1;3} \right)\backslash \left\{ 2 \right\}\).Vậy tập xác định \(D = \left[ { – 1;3} \right)\backslash \left\{ 2 \right\}\).
Câu 5:

Tìm giá trị của tham số \(m\) để hàm số \(y = \frac{{x + 1}}{{x – 2m + 1}}\) xác định trên nửa khoảng \(\left( {0;1} \right]\).

Hàm số xác định khi \(x – 2m + 1 \ne 0 \Leftrightarrow x \ne 2m – 1\).

Hàm số xác định trên \(\left( {0;1} \right] \Leftrightarrow 2m – 1 \notin \left( {0;1} \right] \Leftrightarrow \left[ \begin{gathered} 2m – 1 \leqslant 0 \hfill \\ 2m – 1 > 1 \hfill \\ \end{gathered} \right. \Leftrightarrow \left[ \begin{gathered} m \leqslant \frac{1}{2} \hfill \\ m > 1 \hfill \\ \end{gathered} \right.\).
Câu 6:

Trong các điểm sau đây điểm nào thuộc đồ thị của hàm số \(y = 3x – 1\)?

Thay \(x = 0\) vào hàm số ta thấy \(y = – 1\).

Vậy \({M_2}\left( {0\,; – 1} \right)\) thuộc đồ thị hàm số.
Câu 7:

Điểm sau đây không thuộc đồ thị hàm số \(y = \frac{{\sqrt {{x^2} – 4x + 4} }}{x}\)?

Đặt \(f\left( x \right) = \frac{{\sqrt {{x^2} – 4x + 4} }}{x}\)

A. \(A\left( {2;0} \right)\).

Ta có \(f\left( 2 \right) = \frac{{\sqrt {{2^2} – 4.2 + 4} }}{2} = 0\).

Suy ra, điểm \(A\) thuộc đồ thị hàm số.

B. \(B\left( {3;\frac{1}{3}} \right)\).

Ta có \(f\left( 3 \right) = \frac{{\sqrt {{3^2} – 4.3 + 4} }}{3} = \frac{1}{3}\).

Suy ra, điểm \(B\) thuộc đồ thị hàm số.

C. \(C\left( {1; – 1} \right)\).

Ta có \(f\left( 1 \right) = \frac{{\sqrt {{1^2} – 4.1 + 4} }}{3} = \frac{1}{3} \ne – 1\).

Suy ra, điểm \(C\) không thuộc đồ thị hàm số.
Câu 8:

Tìm \(m\) để đồ thị hàm số \(y = 4x + m – 1\) đi qua điểm \(A\left( {1;2} \right)\).

Đồ thị hàm số \(y = 4x + m – 1\) đi qua điểm \(A\left( {1;2} \right)\)

suy ra \(2 = 4.1 + m – 1 \Rightarrow m = – 1\)
Câu 9:

Cho hàm số \(f\left( x \right) = \left\{ \begin{gathered} {x^2} + 3x + 1;khi{\text{ }}x \leqslant 1{\text{ }} \hfill \\ – x + 2{\text{ }};khi{\text{ }}x > 1 \hfill \\ \end{gathered} \right.\). Tính \(f\left( { – 2} \right)\).

\(f\left( x \right) = \left\{ \begin{gathered} {x^2} + 3x + 1\,\,khi{\text{ }}x \leqslant 1{\text{ }} \hfill \\ – x + 2{\text{ }}\,\,\,khi{\text{ }}x > 1 \hfill \\ \end{gathered} \right.\)\( \Rightarrow f\left( { – 2} \right) = {\left( { – 2} \right)^2} + 3.\left( { – 2} \right) + 1 = – 1\).
Câu 10:

Hàm số \(f\left( x \right) = \left\{ \begin{gathered} \frac{{2\sqrt {x – 2} – 3}}{{x – 1}}{\text{ khi x}} \geqslant {\text{2}} \hfill \\ {x^2} + 2{\text{ khi x < 2}} \hfill \\ \end{gathered} \right.\). Tính \(P = f\left( 2 \right) + f\left( { - 2} \right)\).

Ta có: \(P = f\left( 2 \right) + f\left( { – 2} \right)\)\( = \frac{{2\sqrt {2 – 2} – 3}}{{2 – 1}} + \left[ {{{\left( { – 2} \right)}^2} + 2} \right]\)\( = 3\).

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Kiểm Tra Thường Xuyên Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 5

Đáp án câu 1:
A
1. \(D = \left( { - \infty ;6} \right]\backslash \left\{ 2 \right\}\).
Đáp án câu 2:
C
3. \(D = \left( {3; + \infty } \right)\).
Đáp án câu 3:
D
4. \(D = \left[ { - 2;3} \right].\)
Đáp án câu 4:
A
1. \(\left[ { - 1;3} \right)\backslash \left\{ 2 \right\}\).
Đáp án câu 5:
B
2. \(\left[ \begin{gathered} m \leqslant \frac{1}{2} \hfill \\ m > 1 \hfill \\ \end{gathered} \right.\).
Đáp án câu 6:
B
2. \({M_2}\left( {0;{\text{ }} - 1} \right).\)
Đáp án câu 7:
C
3. \(C\left( {1; - 1} \right)\).
Đáp án câu 8:
B
2. \(m = - 1\).
Đáp án câu 9:
A
1. \( - 1\).
Đáp án câu 10:
A
1. \(P = 3\).

Tải PDF tài liệu học tập đang trở thành lựa chọn phổ biến cho sinh viên và người đi làm nhờ tính tiện lợi và tiết kiệm thời gian. Tài liệu PDF cung cấp nhiều nội dung từ sách PDF, tài liệu nghiên cứu, đến giáo trình chuyên ngành, giúp người dùng dễ dàng lưu trữ và truy cập trên các thiết bị số. Việc sử dụng tài liệu PDF không chỉ giúp tăng cường kiến thức mà còn hỗ trợ học tập và làm việc hiệu quả hơn.

YÊU CẦU TÀI LIỆU