Khoảng nghịch biến của hàm số \(y = {x^2} – 4x + 3\)là
3. \(\left( { - \infty ;2} \right)\).
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = {x^2} – 2\left( {m + 1} \right)x – 3\) đồng biến trên khoảng \(\left( {4;2024} \right)\)?
4. 3
Cho parabol \(\left( P \right):y = 3{x^2} – 2x + 1\). Điểm nào sau đây là đỉnh của \(\left( P \right)\)?
2. \(I\left( {\frac{1}{3};\,\frac{2}{3}} \right)\).
Parabol \(y = – {x^2} + 2x + 3\) có phương trình trục đối xứng là
3. \(x = 1\).
Cho Parabol: \(y = a{x^2} + bx + c\) có đỉnh \(I(2;0)\) và \((P)\) cắt trục \(Oy\) tại điểm \(M(0; – 1)\). Khi đó Parabol có hàm số là
3. \((P):y = - \frac{1}{4}{x^2} + x - 1\).
Bảng biến thi của hàm số \(y = – 2{x^4} + 4x + 1\) là bảng nào sau đây?
3. <img src="https://tailieuhoctap.taipdf.com/anh-dap-an-trac-nghiem/kiem-tra-15-phut-bai-16-ham-so-bac-hai-online-co-dap-an-va-loi-giai-de-3-5-2-0.jpg" alt="Kiểm Tra 15 Phút Bài 16 Hàm Số Bậc Hai Online Có Đáp Án Và Lời Giải-Đề 3" width="260px">.
Cho hàm số \(y = a{x^2} + bx + c,\,(a > 0,\,b < 0,\,c > 0)\)thì đồ thị của hàm số là hình nào trong các hình sau:
3. Hình (3).
Cho hàm số \(y = a{x^2} + bx + c,\,\left( {a \ne 0} \right)\) có bảng biến thiên trên nửa khoảng \(\left[ {0; + \infty } \right)\) như hình vẽ dưới đây:Xác định dấu của \(a\), \(b\), \(c\).
4. \(a < 0,b > 0,c < 0\).
Giá trị nhỏ nhất của hàm số \(y = {x^2} + 2x + 3\) đạt được tại
2. \(x = - 1\).
Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ \(Oth\), trong đó \(t\) là thời gian kể từ khi quả bóng được đá lên; h là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao \(1,2m\). Sau đó \(\;1\) giây, nó đạt độ cao \(8,5m\) và \(2\) giây sau khi đá lên, nó đạt độ cao 6m. Hỏi sau bao lâu thì quả bóng sẽ chạm đất kể từ khi được đá lên kể từ khi quả bóng được đá lên, \(h\) là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao \(1,2m\) và sau \(1\) giây thì nó đạt độ cao \(8,5m\), sau \(2\) giây nó đạt độ cao \(6m\). Tính \(10a + 5b + 5c\).
3. \(10a + 5b + 5c = 18\).
Kết quả:
Tải PDF tài liệu học tập đang trở thành lựa chọn phổ biến cho sinh viên và người đi làm nhờ tính tiện lợi và tiết kiệm thời gian. Tài liệu PDF cung cấp nhiều nội dung từ sách PDF, tài liệu nghiên cứu, đến giáo trình chuyên ngành, giúp người dùng dễ dàng lưu trữ và truy cập trên các thiết bị số. Việc sử dụng tài liệu PDF không chỉ giúp tăng cường kiến thức mà còn hỗ trợ học tập và làm việc hiệu quả hơn.