Số điểm cực trị của hàm số \(f\left( x \right) = – {x^4} + 2{x^2} – 3\) là
4. \(2\)
Tìm điểm cực tiểu của hàm số \(y = \frac{1}{3}{x^3} – 2{x^2} + 3x + 1\)
3. \(x = 1\)
Điểm cực đại của đồ thị hàm số \(y = {x^3} – 3x\) là?
4. \(\left( {1;0} \right)\).
Đồ thị hàm số \(y = {x^3} + 3{x^2} – 2\) có khoảng cách giữa hai điểm cực trị bằng
4. \(5\).
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f’\left( x \right) = \left( {x + 1} \right){\left( {x – 2} \right)^2}{\left( {x – 3} \right)^3}\). Hỏi hàm số \(f\left( x \right)\) có mấy điểm cực trị?
1. \(3\).
Điểm cực tiểu của đồ thị hàm số \(y = – {x^4} + 18{x^2} – 1\) là
4. \(\left( { - 1;0} \right)\).
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f’\left( x \right) = {x^2}\left( {{x^2} – 1} \right)\). Điểm cực tiểu của hàm số \(y = f\left( x \right)\) là
4. \(x = 1\).
Đồ thị của hàm số \(y = – {x^3} + 3{x^2} + 9x + 1\) có hai điểm cực trị \(A\) và \(B\). Điểm nào dưới đây thuộc đường thẳng \(AB\) ?
2. \(P\left( {1;\,0} \right)\).
Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu của \(f'(x)\) như sau:Số điểm cực đại của hàm số đã cho là
4. 4.
Hàm số \(f(x)\) có đạo hàm \(f'(x)\) trên khoảng \(K\). Cho đồ thị của hàm số \(f'(x)\) trên khoảng \(K\) như sau:Số điểm cực trị của hàm số \(f(x)\) trên \(K\) là:
1. 4.
Kết quả:
Tải PDF tài liệu học tập đang trở thành lựa chọn phổ biến cho sinh viên và người đi làm nhờ tính tiện lợi và tiết kiệm thời gian. Tài liệu PDF cung cấp nhiều nội dung từ sách PDF, tài liệu nghiên cứu, đến giáo trình chuyên ngành, giúp người dùng dễ dàng lưu trữ và truy cập trên các thiết bị số. Việc sử dụng tài liệu PDF không chỉ giúp tăng cường kiến thức mà còn hỗ trợ học tập và làm việc hiệu quả hơn.