1. Trang Chủ
  2. ///

Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Xem thêm đầy đủ hơn Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5 tại: https://tusach.vn/tai-lieu-hoc-tap/trai-nghiem/trac-nghiem-su-dong-bien-va-nghich-bien-cua-ham-so-online-de-5

Đề Kiểm Tra: Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Câu 1:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 2:

Bảng biến thiên trong hình vẽ là của hàm sốTrắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng?Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Từ bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng \(\left( {3; + \infty } \right)\).
Câu 4:

Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?

Ta có: \(y = {x^3} – 3{x^2} + 3x + 5 \Rightarrow y’ = 3{x^2} – 6x + 3 \geqslant 0\,,\;\forall x \in \mathbb{R}\) và \(y’ = 0 \Leftrightarrow 3{x^2} – 6x + 3 = 0 \Leftrightarrow x = 1\)

Nên hàm số \(y = {x^3} – 3{x^2} + 3x + 5\) đồng biến trên \(\mathbb{R}\).
Câu 5:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số đã cho.Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Câu 6:

Cho hàm số \(y = \frac{{2x – 3}}{{4 – x}}\). Hãy chọn khẳng định đúng trong các khẳng định sau:

TXĐ: \(D = \mathbb{R}\backslash \left\{ 4 \right\}\).Ta có \(y = \frac{{2x – 3}}{{ – x + 4}}\)\( \Rightarrow y' = \frac{5}{{{{\left( { – x + 4} \right)}^2}}} > 0\), \(\forall x \ne 4\).Do đó hàm số hàm số đồng biến trên các khoảng \(\left( {4; + \infty } \right)\) và \(\left( { – \infty ;4} \right)\).
Câu 7:

Hàm số \(y = {x^3} – 3{x^2} + 3\) đồng biến trên khoảng

Hàm số đã cho có tập xác định là \(\mathbb{R}\).

\(y' = 3{x^2} – 6x,\,\forall x \in \mathbb{R}\)\( \Rightarrow y' > 0 \Leftrightarrow x \in \left( { – \infty \,;\,0} \right) \cup \left( {2\,;\, + \infty } \right)\).

Vậy hàm số đồng biến trên cáckhoảng \(\left( { – \infty \,;\,0} \right)\) và \(\left( {2\,;\, + \infty } \right)\). Suy ra
Câu 8:

Tìm khoảng đồng biến của hàm số: \(y = {x^4} – 6{x^2} + 8x + 1\).

Ta có : \(y' = 4{x^3} – 12x + 8\) ; \(y' = 0 \Leftrightarrow \left[ \begin{gathered} x = – 2 \hfill \\ x = 1 \hfill \\ \end{gathered} \right.\).Bảng biến thiên:Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5Vậy hàm số đồng biến trên khoảng \(\left( { – 2; + \infty } \right)\).
Câu 9:

Các khoảng đồng biến của hàm số \(y = 3{x^5} – 5{x^3} + 2024\) là:

Lưu ý: Dấu của \(y'\) không đổi khi qua nghiệm kép.
Câu 10:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(y = 2024 – f\left( x \right)\) đồng biến trên khoảng nào dưới đây?Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Xét hàm số \(y = 2024 – f\left( x \right)\)Ta có \(y' = – f'\left( x \right)\)

\(y' > 0 \Leftrightarrow f'\left( x \right) < 0\).

Dựa vào đồ thị ta thấy trên khoảng \(\left( {0\,;1} \right)\) thì \(f'\left( x \right) < 0\).

Vậy trên khoảng \(\left( {0;1} \right)\) hàm số \(y = 2024 – f\left( x \right)\) đồng biến.

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Trắc Nghiệm Sự Đồng Biến Và Nghịch Biến Của Hàm Số Online-Đề 5

Đáp án câu 1:
A
1. \(\left( { - \infty ;1} \right)\)
Đáp án câu 2:
C
3. \(y = \frac{{2 - x}}{{x + 1}}\).
Đáp án câu 3:
C
3. Hàm số đã cho nghịch biến trên khoảng \(\left( {3; + \infty } \right)\).
Đáp án câu 4:
C
3. \(y = \frac{1}{{x - 2}}\).
Đáp án câu 5:
D
4. \(\left( { - 2;0} \right)\).
Đáp án câu 6:
A
1. Hàm số đồng biến trên mỗi khoảng xác định.
Đáp án câu 7:
C
3. \(\left( { - \infty \,;\,0} \right)\).
Đáp án câu 8:
B
2. \(\left( { - 2; + \infty } \right)\).
Đáp án câu 9:
A
1. \(\left( { - \infty ; - 1} \right)\); \(\left( {0;1} \right)\).
Đáp án câu 10:
A
1. \(\left( {0;1} \right)\).

Tải PDF tài liệu học tập đang trở thành lựa chọn phổ biến cho sinh viên và người đi làm nhờ tính tiện lợi và tiết kiệm thời gian. Tài liệu PDF cung cấp nhiều nội dung từ sách PDF, tài liệu nghiên cứu, đến giáo trình chuyên ngành, giúp người dùng dễ dàng lưu trữ và truy cập trên các thiết bị số. Việc sử dụng tài liệu PDF không chỉ giúp tăng cường kiến thức mà còn hỗ trợ học tập và làm việc hiệu quả hơn.

YÊU CẦU TÀI LIỆU